
Building scalable and secure L2 and
L3 overlays with Host Identity Proto-
col

Dmitriy Kuptsov

2025

2

Contents

Contents 3

1. Introduction 5

1.1 Questions . 6

2. Background 9

2.1 Cryptography basics . 10

2.1.1 Symmetric cryptography 10

2.1.2 Asymmetric cryptography 11

2.1.3 Cryptographic hash functions 12

2.1.4 Key exchange protocols 13

2.1.5 Post-quantum Lattice-based cryptography 13

2.2 Security protocols . 15

2.2.1 Host Identity Protocol (HIP) 15

2.2.2 Transport Layer Security (TLS) 16

2.2.3 Secure Shell Protocol (SSH) 17

2.3 L2, L3 and L4 tunneling . 17

2.3.1 Virtual Private LAN Services (VPLS) solutions 17

2.3.2 Virtual Private Network (L3-VPN) security solutions 18

3. Results 21

3.1 Hardware-enabled symmetric cryptography 21

3.2 Host Identity Protocol based VPLS 22

3.3 Scalable multipoint to multipoint VPN using HIP protocol . 28

3.4 Comparison of various solutions 29

4. Conclusions 33

Bibliography 35

3

Contents

4

1. Introduction

Back at the end of 1960’s when the Internet was a rather small network,

which was interconnecting major universities, governmental and military

organizations, very little attention was devoted to security. Nowadays,

when the Internet has become extremely sophisticated in structure, con-

necting billions of devices ranging from small IoT-type devices to humon-

gous data centers, security has gained number one priority. In present

days, a typical Intranet of an organization can include a number of ge-

ographically separated branch-office networks (for example, consider a

factory that has many SCADA devices and a mission control center that

is miles and miles away). Since these networks are geographically sepa-

rated, connecting them becomes a necessity, and so is the security of these

networks. This is when the layer-3 virtual private networks (L3-VPN) and

layer-2 virtual private LAN service (L2-VPLS) solutions become handy.

Scalability, and resilience to various attacks, from man-in-the-middle to

integrity violation attacks, to rather fundamental attacks on asymmet-

ric algorithms (such as RSA, DSA, and their elliptic curve counterparts,

Diffie-Hellman and Elliptic Curve DH, for example) using, for example,

Shor’s quantum computer algorithm to factorize large numbers, and mas-

sive brute force attacks on hash algorithms should be considered thor-

oughly. With this in mind, in this work, we present different security

solutions, which can be used to build secure L2 and L3 overlay networks.

We present the limitations of each solution and identify how they can be

avoided.

We start with background material on cryptography. Here we discuss

various symmetric and asymmetric encryption algorithms, present the

definition of hash functions, which are considered secure nowadays, and

discuss several key agreement algorithms. To make the discussion com-

plete we present the threat that quantum computers pose for such algo-

5

Introduction

rithms as RSA and DH, and discuss how post-quantum algorithms such

as those that are based on the lattice can be used as an alternative to

classical algorithms for encryption and signature constructions. Although

not considered as part of the present work, future work can include the

performance comparison of standardized RSA and DSA algorithms with

the performance of lattice-based algorithms incorporated into for exam-

ple Host Identity Protocol or even Transport Layer Security protocol. We

then move on to a discussion of TLS, SSL, IPsec, HIP, and SSH protocols

and how those can be used to achieve integrity and confidentiality of data

transmitted over insecure channels. Afterward, we discuss the results we

have obtained over several years. Here, we discuss our practical experi-

ence with scalable Host Identity Protocol-based L3-VPN and VPLS net-

work which was built using the same protocol. We devote a separate sec-

tion on hardware-accelerated versions of AES and SHA-256 algorithms.

We conclude the results section with an analysis of the limitations of each

solution and present the results for the various micro-benchmarking set-

tings.

1.1 Questions

In this work, we ask several questions. These are not research questions,

but rather practical questions that we try to answer to ourselves in order

to understand the usability of Python-based security solution. Since our

work focuses on the application of Host Identity Protocol (HIP) in VPN

and VPLS settings we ask the following questions:

First, what is the performance of the pure Python-based implementa-

tion of symmetric key encryption and decryption routines as well as hash

methods and how do they compare to implementation, which uses spe-

cial AES and SHA-256 CPU instructions. Here our focus is on the micro

benchmarking of two implementations of AES and SHA-256 hashing al-

gorithms, identification of the bottlenecks and further recommendations

for our prototype implementation of Host Identity Protocol based VPLS

and L3-VPN.

Second, what is the scalability of Host Identity Protocol based VPLS and

how does it perform in emulated environments such as Mininet. Here we

seek the answer to the question of whether the HIP-VPLS is usable in

environments close to real-life setups.

Third, what is the performance of Python-based HIP-VPLS on real hard-

6

Introduction

ware. By asking such questions we want to find the application niche of

our security solution. In addition, we elaborate on the practical configu-

ration of HIP-VPLS using a central controller.

The final question relates to to the deployment of scalable L3-VPN based

on Host Identity Protocol. Here we focus on rather a different approach to

building secure networks: we consider L3-VPN where nodes in different

branch offices form separate broadcast and multicast domains, but still

can communicate with each other (with the assistance of IPv4 or IPv6

routing protocols). Here, we want to answer how to tackle the scalability

issues of VPN network by adding hierarchy into the architecture.

7

Introduction

8

2. Background

Since we are going to discuss the security protocols in this work, we begin

this section with a shallow dive into cryptography basics. Here, we dis-

cuss symmetric and asymmetric cryptography algorithms, to make the de-

scription a little bit complete we show how the RSA algorithm works, dis-

cuss Diffie-Hellman (DH) and its Elliptic Curve counterpart. We should

mention that the current understanding inside the cryptographic commu-

nity is such that Shor’s algorithm and its quantum computer implementa-

tion theoretically can efficiently factorize big numbers and solve discrete

logarithm problems without trouble. This algorithm, if powerful enough

quantum computers will exist shortly, puts the RSA and DH algorithms

- the major building blocks of modern security solutions - at risk of be-

ing cracked (once the modulus of the RSA algorithm factorized into prime

components, the private key of the RSA the algorithm can be easily recov-

ered). We will conclude this part of the background material with the dis-

cussion of post-quantum computer public key encryption solution based

on lattice (more specifically we will discuss Learning With Errors (LWE)

the problem, which is at the heart of modern public key cryptography).

We believe that, eventually, this type of cryptography will be the replace-

ment for traditional RSA and DH algorithms, which rely on the hardness

of factorization of the big numbers and discrete logarithm problems. In

the epilogue of this section, we will put a few words on how lattice public

key cryptography can be used, for example, together with Host Identity

Protocol.

In the second part of the background material, we will review the basics

of the Host Identity Protocol, Transport Layer Security Protocol, and Se-

cure Shell Protocol, since these protocols are essential for understanding

the secure tunneling protocols that we discuss in this work.

We will finalize the discussion of the background material with a short

9

Background

overview of various L2, L3 and L4 tunneling solutions, including L2 802.1Q

QinQ tunneling, L3 Multi-Protocol Label Switching (MPLS), L4 tunneling

using TLS and SSH protocol.

2.1 Cryptography basics

Cryptography comes in many flavors: symmetric key cryptography (3DES,

AES, Twofish, RC4) which, in turn, can be categorized into block cipher

and stream cipher and asymmetric key cryptography (such as RSA, DSA,

ECDSA). There are also key exchange protocols such as Diffie-Hellamn

and Elliptic Cryptography DH for negotiation of common keys over inse-

cure channels. Different algorithms applicable in different settings de-

pending on requirements. Typically, as we will discuss later, symmet-

ric key cryptography is used to protect data-plane traffic in networks,

whereas, asymmetric-key cryptography is more applicable to the common

key negotiation, authentication and identification purposes [20].

2.1.1 Symmetric cryptography

We start with the symmetric key cryptography. Common key and rather

trivial operations such as permutations and substitutions are at the heart

of any symmetric key cryptography algorithm. Although this type of cryp-

tography is efficient because of the usage of efficient operations, it comes

with a limitation though. In symmetric key cryptography, both sender and

receiver need to share the same key, which complicates such important

aspects as key distribution and revocation and so alone this encryption

solution a very hard to use in modern cryptosystems. Typically, asymmet-

ric key cryptography such as RSA or DH is used to derive session keys –

TLS, HIP, and many other protocols follow this design idea.

Symmetric key cryptography comes in two different flavors: block and

stream. For example, block cipher (such as AES, 3DES, Twofish [20]) use

blocks of data (typically, the size of the key is 128, 192, 256 bits [20], and

typical block size is 64, or 128 bits), and encrypts or decrypts one block at

a time. There are different modes of operation, though, for block ciphers,

examples are counter mode and cipher block chaining. The latter uses a

so-called initialization vector to add extra randomness into the encryption

process, and encryption of proceeding blocks depends on the output of the

previous block. Modes of operations are important for security reasons.

10

Background

However, not all modes of operation are useful and secure. For example,

Electronic Code Book (ECB), while achieving fast processing and paral-

lelization, is considered insecure in many settings.

The other type of symmetric key algorithm is stream cipher. Here the

encryption and decryption are performed on separate bits, one bit at a

time. CR4 is an example of a stream cipher. Stream ciphers are extremely

important in real-time processing, for example, Wi-Fi uses stream ciphers

to encrypt the data plane traffic.

2.1.2 Asymmetric cryptography

Asymmetric key cryptography, in its simplest form, is brilliant in the age

of computing. Guessing from the name that this type of cryptography

uses different keys for encryption and decryption does not require deep

thought. This property makes this group of algorithms suitable for vari-

ous key distribution, revocation, and signature ideas.

There is a magnitude of different asymmetric key security algorithms.

RSA, DSA, and its Elliptic curve variant ECDSA are the pillars of modern

security solutions. However, the flexibility of these schemes comes at an

extra price of CPU cycles. All this makes these solutions inapplicable for

securing data plane traffic, but only rather to secure control plane. In

what follows, just to underpin the beauty of the math behind asymmetric

key cryptography, we provide a description of the RSA algorithm.

In the RSA cryptosystem, the sender generates a pair of keys as fol-

lows: First, the sender chooses large enough two prime numbers p and

q. Next, the sender computes n = pq and evaluates Euler’s phi function:

φ(n) = (p− 1)(q− 1). This is the same as the number of numbers co-prime

to n. The sender then selects at random encryption exponent e such that

1 < e < φ(n) and also e should be co-prime to φ(n). Finally, the sender or

the dealer computes the decryption exponent d, such that ed ≡ 1 mod φ(n)

using modular multiplicative inverse (for that purpose extended Euclid-

ian algorithm can be used).

The public key is then (n, e), and the private key is (n, d). To encrypt the

message m the sender computes c = me mod n. The decryption is similar

m = cd mod n. The beauty is in Fermat’s little theorem, which states that

mφ(n) mod n ≡ 1 mod n. Now, ed ≡ 1 mod φ(n), which means that ed =

kφ(n) + 1, and so m(ed) mod n ≡ m(kφ(n)+1)mod n ≡ 1km mod n ≡ m mod n.

In practice, RSA requires random padding to protect against such at-

tacks as chosen ciphertext attacks and making two identical plaintexts

11

Background

produce various ciphertexts. Padding also ensures that the message size

is multiple of the encryption block-size. In practice, Optimal Asymmetric

Encryption Padding (OAEP) scheme is used.

It is good to know that if the message is hashed and encrypted with

the private key, the result is a form of digital signature since the sender

cannot later deny that it was involved in the encryption process. A Digi-

tal Signature Algorithm (DSA) is another example of an asymmetric sig-

nature scheme and was specifically designed for that purpose. In turn,

Elliptic Curves improve the performance of regular DSA algorithms.

Frankly speaking, one-way functions can be also used to construct sig-

nature schemes. For example, one can use one-time hash-based signa-

tures to produce secure digital signatures. Nevertheless, the application

of these types of signature algorithms is rather impractical and finds little

application in real-life settings.

2.1.3 Cryptographic hash functions

Mathematically speaking, hash function is a special one-way function: For

a given pre-image of an arbitrary size it produces an image or hash value

of a fixed size, which is universally unique. Ideally, secure hash functions

should guarantee that the result it produces is irreversible. That it is, it

should be extremely hard to find a pre-image or original message, given

the hash or the fingerprint. Secure hash functions should be also collision-

resistant. In other words, it should be extremely hard, if not impossible

at all, to find two different messages m and m′ that will hash to the same

value, i.e., hash(m) = hash(m′).

Secure hash functions are important in modern cryptography. For ex-

ample, they can serve as authentication tokens for messages transmitted

over the wire (useful, for example, in detecting message manipulation dur-

ing transmission), they also allow compressing the message before signing

it with the digital signature algorithm, and, finally, they can be used to

find the differences between the messages efficiently (useful in large file

transfer operations). The application area is of course broader than just

these few examples.

Hash functions come in different flavors, but good ones should be com-

putationally efficient and resistant to collisions. Today, hash functions

such as MD2, MD4 and MD5 considered broken, as there are works that

showed successful attacks. Briefly speaking, researchers found collisions

for these hash functions. Therefore, it is not recommended to use these

12

Background

hash functions in security applications. A more modern family of SHA

hash functions also exists. For example, engineers recommend to use

SHA-256, SHA-512 and recent SHA-3 in modern applications, as no suc-

cessful attacks were registered for these types of hash functions.

Hash functions pave the road for such a notion as authentication tokens

when combined with a secret key in a special way. Examples are Hash-

based MAC (HMAC) [20], Parallelizable MAC (PMAC) [14], Cipher-based

MAC (CMAC) which is based on AES cipher. For instance, by sending

an HMAC together with the original message one can make sure that

the message will not be modified during the transmission. If, however,

the message will be altered on the route to a recipient, this fact will be

detected immediately during the verification process.

Hash functions are also useful in signatures. For example, one-time sig-

natures use hash functions to construct a digital signature of a message.

They are, however, impractical as they require a considerable amount of

storage and can be used only one time as the name implies. An interested

reader can find more information about hash functions here [20].

2.1.4 Key exchange protocols

Finally, key exchange algorithms are also important in modern systems

as they allow the negotiation of common keys over insecure channels. Of

course, RSA can be used to deliver a session key by encrypting it with

the recipient’s public key, but specially crafted key negotiation algorithms

exist in practice. Two bright examples are Diffie-Hellman (DH) and Ellip-

tic Curve DH. Both DH and ECDH need to be authenticated in order to

guarantee security.

2.1.5 Post-quantum Lattice-based cryptography

Shor’s algorithm [18], implemented on a quantum computer, makes cer-

tain computational problems (such as factorization of large numbers and

discrete logarithm problems) feasible in polynomial time. This shutters

the security of the Internet, and so rigorous research was initiated to fill

the gap. In what follows we discuss certain hard mathematical problems

on lattices and show the workings of the Learning With Errors (LWE)

public key encryption scheme [17]. In fact majority of NIST’s candidates

for post-quantum public key encryption algorithms are based on LWE.

A lattice is a mathematical structure that consists of integers in n di-

13

Background

mensions arranged in a structured lattice-like way. Mathematically, the

lattice is defined as follows:

Λ(B) = {Bx,x ∈ Zn}

where B is a matrix of basis vectors that generates the lattice. We should

note that there exist a large number of basis vectors, some are good some

are bad.

A closest vector problem (CVP) on lattices, which is considered NP-

hard, and believed unsolvable even on quantum computers, can be defined

as follows. Given a point t ∈ Rn and a lattice Λ(B), the task is to find a

closes point Bx on lattice:

min
∀x∈Zn

‖Bx− t‖

In practice, the above problem is extremely hard to solve which makes

lattice-based cryptography attractive to cryptographers.

From linear algebra we know that solving equation Ax = b is simple

using Gaussian elimination. However, if a random noise is added to the

equation

Ax + e = b

the problem is considered as hard as CVP on the lattice. Solving the above

problem directly relates to solving the CVP problem on lattice if the pa-

rameters are selected carefully.

So, given a matrix A ∼ U(Znxm
q), vector s ∼ U(Zn

q) and vector e ∼ DZm,σ

sampled from discrete (clipped) Gaussian distribution with parameter σ.

We require that, the probability P [e < q/4] is high (i.e. 99.99%) to en-

sure correct decryption of the message and to achieve the required level

of security. We can define matrix A, secret key s and noise vector e as

follows:

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

.

am1 am2 am3 . . . amn

 (2.1)

s =


s1

s2

. . .

sn

 (2.2)

14

Background

e =


e1

e2

. . .

em

 (2.3)

Once the parameters are generated, we can compute As + e = b. Then,

the public key is (A,b) and the private key is s. Deriving s from b is a

hard task at hand.

To encrypt the message µ ∈ {0, 1}, we choose r ∼ U({0, 1}m). Then we

compute u = rA and v = rb + bq/2eµ. The ciphertext is (u, v). To decrypt

the message we can compute v − us: if the result is close to 0 output

0, otherwise, if the result is close q/2 output 1. For decryption to work

correctly, we require that the parameter σ = q/(4m).

The major disadvantage of lattice-based cryptography is the size of the

keys and actual ciphertext. For example, the security of LWE depends

on two parameters n and q. By choosing n = 512 and q = 216, the size

of ciphertext for a message of k = 256 bits long (for example, this is the

size of the key for AES-256 symmetric algorithm), will be O(k · n · log q) ≈

256·16·512 bits or roughly whooping 256 KB. All in all the security does not

come for free. Of course, there are way much practical implementations of

LWE-based encryption algorithms, for example, the reader can take a look

at Kyber [16] which has a practical implementation in the TLS library.

2.2 Security protocols

Equipped with a basic understanding of cryptography we will now dive

into a discussion of some of the well-known security protocols, including

IPSec, HIP, TLS, and SSH. All these protocols make a solid basis for se-

cure internetworking.

2.2.1 Host Identity Protocol (HIP)

Internet was designed initially so that the Internet Protocol (IP) address

has a dual role: it is the locator, so that the routers can find the recipient

of a message, and it is an identifier so that the upper layer protocols (such

as TCP and UDP) can make bindings (for example, transport layer sockets

use IP addresses and ports to make connections). This becomes a problem

when a networked device roams from one network to another, and so the

IP address changes, leading to failures in upper-layer connections. The

15

Background

other problem is the establishment of an authenticated channel between

the communicating parties. In practice, when making connections, the

long-term identities of the parties are not verified. Of course, solutions

such as SSL can readily solve the problem at hand. However, SSL is suit-

able only for TCP connections, and most of the time, practical use cases

include only secure web surfing and the establishment of VPN tunnels.

Host Identity Protocol, on the other hand, is more flexible: it allows peers

to create authenticated secure channels on the network layer, so all upper-

layer protocols can benefit from such channels. More on the protocol can

be found in [15].

HIP relies on the 4-way handshake to establish an authenticated ses-

sion. During the handshake, the peers authenticate each other using

long-term public keys and derive session keys using Diffie-Hellman or

Elliptic Curve (EC) Diffie-Hellman algorithms. To combat the denial-of-

service attacks, HIP also introduces computational puzzles.

HIP uses a truncated hash of the public key as an identifier in the form

of an IPv6 address and exposes this identifier to the upper layer protocols

so that applications can make regular connections (for example, appli-

cations can open regular TCP or UDP socket connections). At the same

time, HIP uses regular IP addresses (both IPv4 and IPv6 are supported)

for routing purposes. Thus, when the attachment of a host changes (and

so does the IP address used for routing purposes), the identifier, which is

exposed to the applications, stays the same. HIP uses a particular sig-

naling routine to notify the corresponding peer about the locator change.

More information about HIP can be found in RFC 7401 [3].

2.2.2 Transport Layer Security (TLS)

Secure socket layer (SSL) [2] and Transport Layer Security (TLS) [5] are

an application layer solutions to secure TCP connections. SSL was stan-

dardized in RFC 6101. TLS was standardized in RFC 5246. And was

designed to prevent eavesdropping, man-in-the-middle attacks, tamper-

ing, and message forgery. In SSL communicating hosts can authenticate

each other with the help of longer-term identities - public key certificates.

SSL is great for building VPN tunnels and protecting upper-layer proto-

cols such as HTTP.

16

Background

2.2.3 Secure Shell Protocol (SSH)

Secure Shell protocol (SSH) is the application layer protocol that provides

an encrypted channel for insecure networks. SSH was originally designed

to provide secure remote command-line, login, and command execution.

But in fact, any network service can be secured with SSH. Moreover, SSH

provides a means for creating VPN tunnels between spatially separated

networks: SSH is a great protocol for forwarding local traffic through re-

mote servers.

2.3 L2, L3 and L4 tunneling

Virtual Private LAN Services (or VPLS), L3-VPNs, and L4 tunneling are

pretty standard nowadays. Companies build security solutions to provide

Layer-2 and Layer-3 services for branch offices: VPLS are typically built

as overlays on top of Layer-3 (IP) and are Ethernet over IP type overlays,

whereas L3-VPNs are IP-in-IP tunneling solutions.

In VPLS, when a frame arrives at VPLS provider equipment (PE), it is

encapsulated into an IP packet and is sent out to all other VPLS network

elements comprising emulated LAN. Security of such overlays is impor-

tant for obvious reasons: customers do not want their corporate traffic

to be sniffed and analyzed. In L3-VPN networks, on the other hand, the

networks form different broadcast domains, and so when an IPv4 or IPv6

packet arrives at the VPN box, it is encapsulated in another IP packet and

sent out using the backbone network. In this work, we built such secure

overlays with Host Identity Protocol.

In this section, however, we will briefly review some of the widely used

solutions for building L2, L3 and L4 overlays.

2.3.1 Virtual Private LAN Services (VPLS) solutions

In this section we will cover to standard ways to build VPLS networks

(using, for example, 802.1q QinQ tunneling and MPLS).

QinQ tunneling

When the path from one network to the other, such as branch office to

head office, traverses only layer-2 switches (i.e. no IP routing is involved),

the VPLS can be organized with the help of 802.1Q protocol [12]. Broadly,

speaking this is not a protocol as such, but rather VLAN tag-based switch-

17

Background

ing. Thus, on the ingress point, an additional 802.1q service provider SP-

VLAN tag is inserted in the L2 header of an Ethernet frame. Later, the

forwarding decisions are made using this SP-VLAN tag. On the egress

point, the SP-VLAN tag is removed and the original Ethernet frame is

forwarded to the recipient based on the destination MAC address and, if

exists, on the inner C-VLAN tag.

It should be noted that the configuration of forwarding is a manual step.

Also, QinQ does not provide additional mechanisms to secure the cus-

tomer’s traffic, thus limiting the application domain of this solution.

MPLS tunneling

Multi-protocol label switching is a standard protocol for forwarding any

traffic type. It is a layer 2.5 solution that sits between the data link layer

and the network layer.

In MPLS the packets are forwarded not using MAC or IP addresses,

but rather using labels, which are distributed by control protocol. Thus,

when a frame arrives at the router the current label is popped, the new

label is added and the frame is forwarded to the next hop router. The pro-

cess continues until the frame reaches the destination network where it is

routed based on the original identifiers (IP addresses or MAC addresses).

Obviously, MPLS has label distribution protocol and label switching com-

ponents. MPLS is an ideal solution to create overlays (i.e. L2 and L3

VPNs).

2.3.2 Virtual Private Network (L3-VPN) security solutions

The major drawback of QinQ and MPLS is that they do not offer encryp-

tion and authentication of traffic out-of-the box. Therefore, additional

steps needs to be taken to protect end-to-end traffic. In this section we

will review PPTP, SSL-based VPNs, L2TP and IPsec tunnels.

Multipoint to single point VPN

Multipoint to single-head VPN is a standard way of organizing a VPN

network for an organization that has a single head office and multiple

branch offices. In this setup, multiple branch offices are connected to a

head end. We show such a setup in Figure 2.1.

There are several protocols available for such an arrangement. Exam-

ples are: (i) Point-to-Point Tunneling Protocol (PPTP) [19]; (ii) Generic

Routing Encapsulation (GRE) [19]; (iii) SSL-based Secure Socket Tunnel-

18

Background

Figure 2.1. Typical arrangement of the VPN

ing Protocol (SSTP); (iv) Layer 2 Tunneling Protocol (L2TP) [19], which

is an older protocol that can be combined with IPSec for encryption; (v)

Internet Protocol Security (IPSec).

GRE on its own does not provide security and can be used together with

IPsec to secure the traffic. PPTP, in turn, does not provide strong secu-

rity out of the box. PPTP uses weak Microsoft Point-to-Point Encryption

(MPPE), which is considered insecure. PPTP combines GRE and PPP pro-

tocols under a single umbrella. It is the PPP protocol [19] that provides

such services as authentication (using MS-CHAPv2, PAP or strong EAP

protocol) and link configuration (i.e. using Link Control Protocol (LCP)).

Overall, it is not recommended to use PPTP in modern VPN setups. L2TP

with IPSec AES-256 encryption is more secure alternative.

SSTP protocol is built on top of existing SSL. It allows tunneling user

traffic over protected channel, and yet the traffic looks like normal HTTPS

traffic to service providers. We have, ourselves, created a similar in spirit

L3-VPN solution that is based on SSL [6]. The solution operates on a

standard HTTPS port. However, our idea is to tunnel all traffic from VPN-

agnostic hosts through the off-the-path black box that encrypts all traffic

and sends encapsulated in TCP and SSL packets to the L3-VPN head

server. The solution that we have created is a simple script that allows us

to set up such an arrangement with no hassle. One drawback is that it

19

Background

uses TCP for transport: sending over a reliable TCP channel and over well

known HTTPS port is good for bypassing the traffic filters, but reduces the

performance especially if the channel has a large latency and error rate.

IPSec [19] comes in two variations: Authentication Header (AH) and En-

capsulating Security Payload (ESP). The first does not encrypt the data-

plane traffic but rather adds HMAC to the packet. The second one, in

addition to authentication, adds encryption of the payload. IPSec, when

combined with the key exchange protocols, such as Internet Key Exchange

(IKE) [4], can be used to create secure tunnels between the sites.

SSH tunneling

SSH, despite that it was invented for remote access to Linux-like boxes,

can be used to tunnel local traffic to remote machine and remote traffic to

local machine [13]. Thus, it can be used to create layer-4 tunnels. For ex-

ample, the following command will tunnel all local traffic from port 4443

to remote web-server youtube.com on port 443:

ssh -L 192.168.1.1:4443:youtube.com:443 user@strangebit.io

In this example, when the client types https://192.168.1.1:4443/ in

the browser window, the traffic will be forwarded to the remote youtube

server through the SSH server strangebit.io.

There is also a possibility to perform reverse tunneling, i.e. one can

expose the local service to the world. For example, suppose you have a

precious MySQL resource in your local network running on host 192.168.

1.45 on port 3306, then you can expose the service to the world using the

following command:

ssh -R 0.0.0.0:3306:192.168.1.45:3306 user@strangebit.io

This way various tunneling setups can be organized making SSH an

attractive secure tunneling solution.

20

3. Results

In this chapter, we are going to present the results that we have obtained

throughout the several years that we have spent building various sys-

tems. We start with the results for the cryptographic library which we

have implemented to boost the performance of AES and HMAC algo-

rithms on Intel CPUs. We then present the results for complete HIP-

VPLS architecture and present the looking of the web interface which

was used to configure the HIP switches. Finally, we present the design

and implementation of the hierarchical L3-VPN in the Mininet emulator.

3.1 Hardware-enabled symmetric cryptography

Part of the work that we have done was related to porting parts of the

code to pure C and special Intel CPU instructions. In this section, we will

describe our achievements in this direction.

For the benchmarking, we have selected three implementations. The

first one was pure Python based. For that purpose, we have used Py-

Cryptodome library. The second implementation was a Python wrapper

to the C library that used special Intel CPU instructions to boost the AES

and SHA-based HMAC operations. The third implementation was pure

C library which was using Intel NI instructions. The results for AES-256

and HMAC operations for varying block sizes are shown in Figure 3.1 and

in Figure 3.2. The plots show the average running time in microseconds

with the 95% confidence intervals.

What does this mean to HIP-VPLS performance? For a standard packet

of size 1500 bytes we have compared the performance (combined HMAC

and AES-256) and it turned out, on one hand, that the implementation

of cryptography in pure C with special CPU instructions was 12.1 faster

than pure Python implementation. On the other hand, Python implemen-

21

Results

0

5

10

15

20

0 500 1000 1500
Message size, Bytes

T
im

e,
 u

s

Implementations Hybrid Native Python

Figure 3.1. AES-256 encryption (microseconds)

tation with bindings to C library demonstrated performance which was

2.3 times faster. By making back of the envelop calculations we predict

that Python implementation can achieve roughly 461 Mbit/s in upload and

download directions cumulatively. However, in practice, given other oper-

ations with packets, we did not get this result in our experiments (more

about the performance of HIP-VPLS on real hardware can be found in the

proceeding chapter). For the plain C implementation with AES and SHA

instructions, the performance will be better and constitute an astonish-

ing 2.5 Gbit/s. If someone needs to run the code in production the entire

code needs to be rewritten in plain C or Rust programming language for

adequate performance.

3.2 Host Identity Protocol based VPLS

Virtual Private LAN Services (VPLS) provide means for building Layer 2

communication on top of existing IP networks. As we have mentioned al-

ready, VPLS can be built using various approaches. However, when build-

ing a production-grade VPLS solution one needs to have a clear picture of

22

Results

0

10

20

30

40

0 500 1000 1500
Message size, Bytes

T
im

e,
 u

s

Implementations Hybrid Native Python

Figure 3.2. HMAC calculation (microseconds)

how such aspects as security and scalability will be solved.

In what follows, we will demonstrate how to build the VPLS using Host

Identity Protocol (HIP). Our initial goal was not to build a production-

grade implementation of HIP switches. Instead, at first, we were only

interested in demonstrating proof of a concept solution in Mininet [1] –

a framework for emulating L2 and L3 networks. It is worth mentioning

that the code we have produced can be also deployed (under certain con-

ditions; for example, our HIP implementation does not feature the NAT

traversal mechanisms) on the real hardware in the Internet. We are going

to demonstrate a working prototype in the later part of this work (here we

assume that the public IPs are not from private range). All our prototypes

use Python-based HIP [11] as the bases.

While building HIP switches (the switches that are deployed at the bor-

der of a network and are responsible for setting up security associations

and pseudowires) we came across several challenges. First, to avoid loops

the underlying network needs to support the IEEE 802.1D protocol (or

its modification - this really depends on the version of the protocol sup-

ported by the switches). This problem was initially addressed in the rele-

23

Results

vant IETF draft. For the sake of brevity, we note that if LAN implements

802.1D STP protocol there will be no loops in the HIP-VPLS instance. Sec-

ond, there were certain issues with MTU and the inability of the Linux

kernel to deliver IP packets when those are fragmented in user space and

injected into the network stack using raw sockets. And finally, it took us

some time to repackage the existing implementation of HIP protocol as a

library, so that it would be agnostic about low-level networking (such as

raw sockets, etc.). In the proceeding paragraphs, we will demonstrate the

usage of HIP-based VPLS using loop-free L2 topology.

The logical network diagram of our Mininet prototype is shown in the

Figure 3.4.

Figure 3.3. HIP-VPLS logical diagram (Mininet deployment)

Our HIP-VPLS implemnetation [7] in Mininet was using static config-

uration, meaning that HIP-VPLS mesh, resolver and firewall rules were

configured prior to deployment of the overlay network and remained un-

changed throughout the experiments. An interested reader can take a

look at [7] for precise steps that are required to deploy the HIP-VPLS in

the Mininet environment.

Overall, HIP-VPLS works as follows: (i) The daemon constantly listens

for packets on private interface and public interface; (ii) if the frame,

which arrives on the private interface, is broadcast or multicast daemon

chooses all HIP-VPLS peers in mesh to send the packet; (iii) if the frame

is unicast and HIP security association exists for the destination daemon

sends the packet to the selected HIP switch; (iv) if no security association

exists HIP switch triggers HIP base exchange to negotiate secret keys

and to establish security association; (v) If the IPSec packet arrives on

24

Results

the public interface, first HMAC is verified, and if it is valid the packet is

decrypted; the original Ethernet frame is then reinjected into the private

interface and regular destination MAC-based and VLAN-based forward-

ing is performed to deliver the frame to the recipient.

Our HIP switch also implements the MAC learning and aging function-

ality: whenever a frame arrives on the public interface the HIP-switch

notes the source MAC address and adds it to the local database. Later,

when a unicast frame arrives on the private interface, it looks up the

destination MAC address and chooses the corresponding HIP association

and pseudowire to send the frame encapsulated into an IPSec packet to

the recipient.

Figure 3.4. HIP-VPLS logical diagram (real hardware deployment)

To get a grasp on the performance of HIP-VPLS in the Mininet envi-

ronment we have performed a series of bandwidth tests using iperf tool.

To run the experiments we have used the UTM emulator (installed on

MacBook M1) with Ubuntu 22.04 installed. All in all the results were the

following: the 95% confidence interval for sample mean throughput was

58.9± 0.52 Mbit/s.

We now turn our attention to the real-life deployment of HIP-VPLS [8,

9]. The system architecture is similar to our Minent prototype (except

that there was a lesser number of HIP switches) shown in Figure 3.4.

Apart from the HIP-VPLS switches, we have also implemented a unique

control-plane protocol on top of the SSL protocol for communication with

the central controller on the Internet.

In our deployment, we have used the following setup. For HIP switches

we have used the dual-network Intel N95 computing platform. We have

25

Results

used 8 port SNR switch to connect 3 HIP switches, that way we have

mimicked the IP overlay in the setup. HIP switches had two interfaces:

one was facing LAN network, the other one was facing the WAN network.

The microcomputers for HIP switches had the following characteristics:

they had 8GB of RAM memory, quad-core Intel N95 CPU (with support

for AES and SHA2 NI instructions), 256 GB of solid state hard drive. To

wire the routers we have used SNR switches (each switch had 8 1 Gbit/s

ports and two Small Form Factor (SFP) slots). The testbed configuration

is shown on Figure 3.6.

In the testbed, we had a multihomed server (with one IP facing the pub-

lic network so that HIP switches will be able to connect to the controller

in the Internet, and one IP in the private range; this server was playing

the role of HIP controller), several legacy microcomputers, IP camera, and

DHCP and DNS servers.

In our testbed the central controller was responsible reporting the live-

ness of HIP switches as well as provisioning the devices with the mesh

configuration information, firewall rules and MAC-based ACL. For that

purpose, we developed a simple secure protocol which was utilizing TLS.

For example, consider the Figure 3.5 which shows the HIP switch regis-

tration and status information.

Figure 3.5. HIP-VPLS central controller UI

According to the protocol, on the one hand, every HIP-VPLS the switch

was reporting to the central controller (all requests were authenticated

using the HMAC algorithm together with the shared symmetric master

secret). In the implementation, switches were reporting their presence ev-

26

Results

ery 5 seconds. On the other hand, every HIP-VPLS switch was obtaining

the configuration from the central controller (such as mesh configuration,

HIT resolver information, firewall rules, and MAC-based ACL).

Figure 3.6. Testbed

To conclude we have performed a series of real-life experiments to mea-

sure the performance of the HIP-VPLS network. In Table 3.1 we show

sample statistics for upload and download throughput. In addition, we

have also measured latency. To perform the measurements we have used

speedtest Python library. Thus, on one side, we have connected the Mac-

Book to the HIP switch via a regular switch. On the other side, we have

connected the other HIP switch to a network that had connectivity to

the Internet. We then performed 100 rounds of measurements, collected

throughput and latency data and processed the cleaned data using Python

statistics library.

27

Results

Statistics Upload (Mbit/s) Download (Mbit/s) Latency (ms)

Sample mean 46.1 48.2 5.0

Sample std 7.1 2.3 0.19

Sample median 44.8 48.8 4.9

Sample min 14.3 40.0 4.6

Sample max 61.3 50.4 5.4

Table 3.1. Performance of HIP-VPLS on Intel N95 CPU

3.3 Scalable multipoint to multipoint VPN using HIP protocol

The major problem with the HIP-VPLS is the number of HIP switches

and full-mesh connectivity between these switches. Imagine that there

are not 10s, but 1000s sites, and that all sites need to be combined into

a single network. First of all, there will be O(n2) pseudo-wires: for 1000

PEs there will be around 1M of routing table entries. Second, HIP-VPLS

provides a single broadcast domain. And so there is going to be chaos

in the network which will be overwhelmed with broadcast and multicast

Ethernet frames. All these aspects make this type of arrangement of net-

work unacceptable in the aforementioned scenarios. Instead, what if we

let each site live in its own broadcast domain, i.e. have a separate network

address, and combine through a series of overlay routers, which will be re-

sponsible for forwarding the packets between the networks (sites) based

on inner IPv4 addresses.

To make the network scalable and reduce the number of pseudowires we

let some nodes play the hub role, that is they will be the backbone of the

overlay network. While some nodes will be the spoke nodes and will be

connected directly to the sites. It is the hierarchy that makes the network

scalable.

It is logical to ask why would someone need to build the multipoint to

multipoint L3-VPN? Well, hub-and-spoke architecture adds reliability to

the system: if one node will fail, the entire network will not. It is, there-

fore, suggested to build the hub-and-spoke type of L3-VPN if high depend-

ability of an overlay is a must.

It is worth to look at the overall architecture which we have imple-

mented in Mininet framework [10]. The logical diagram is shown in Fig-

ure 3.7. As we have already mentioned, the architecture of the distributed

L3-VPN network is of hub-and-spoke type. Hub nodes comprise the back-

bone of the network, whereas, multiple spoke PE elements are attached

28

Results

to the hubs.

The security of the network is achieved by using Host Identity Proto-

col (on a hop-by-hop basis) to negotiate the authentication and encryption

keys, whereas, the actual packet authentication and encryption is per-

formed on hop-by-hop bases using HMAC-SHA256 and AES (with 256

bits key) algorithms. In our prototype implementation we have populated

the routing tables manually, however, in practice this process should be

automated using for example central controller.

Figure 3.7. HIP-based L3-VPN in Mininet

To get the taste of the performance of this setup we have performed

several rounds of experiments with the iperf utility and measured the

throughput with encryption/authentication enabled. The results are the

following: 19.7 ± 0.06 Mbit/s. This was expected, since the packet is de-

crypted and encrypted, as well as HMAC is recalcutated at every hop on

the path from source CE to destination CE. Perphas, hop-by-hop encryp-

tion and authenication can be done selectively with global secret key so

that better performance can be achived.

3.4 Comparison of various solutions

In what follows, we compare now different approaches and identify their

characteristics and limitations. In Table 3.2 we compare three different

29

Results

Characteristic ↓ Overlay type→ L2-VPLS L3-VPN HIP-VPLS

Size of forwarding/routing table O(n) O(m) O(n)

Number of links in mesh O(k2) O(k2) O(l2)

Privacy (exposure of information) MACs IPs No

Encryption and authentication Hop-by-hop Hop-by-hop PE-to-PE

Tunneling mode Ethernet-in-IP IP-in-IP Ethernet-in-IP

Loop free-topology 802.1D/Controller Controller Not required

Table 3.2. Comparison study of different multipoint VPLS/VPN designs

approaches for building overlays with Host Identity Protocol. The first

one is scalable L2-VPLS with hub-and-spoke architecture. The second

one, L3-VPN, also with hub-and-spoke design. And finally, we have HIP-

VPLS at our disposal with full mesh connectivity of provider equipment

(PE).

The first characteristic is the size of the forwarding table on the PE

elements. For L2-VPLS and L3-VPN it is equal to O(n), where n is the

number of regular hosts in the network. This is obvious, as the MAC

address table at least on the edge needs to know the mapping for each

and every host in the network (consider when all hosts talk to all other

hosts). For L3-VPN the size is considerably smaller since the routing table

contains only IP prefixes of the networks and so equals to O(m), where m

is the number of sites, hence, the size of the network address prefixes. The

reader should understand that n� m.

The second important characteristic is the number of links in a mesh

network. For L2-VPLS and L3-VPN it is equal to O(k2), where k is the

number of hub PEs. For HIP-VPLS this metric is equal to O(l2), such

that l is the overall number of sites or PEs. Clearly, l � k, and hence the

L3-VPN achieves better scalability.

What about privacy? Well in scalable L2-VPLS and L3-VPN the MAC

and IPs are exposed to intermediate hubs (at the end these addresses

are used for forwarding). And so if a hub gets compromised this infor-

mation will be leaked to the adversary. In turn, in HIP-VPLS there are

no intermediate nodes in the network since the pseudowires are created

end-to-end, and so there is no risk that the customer will expose sensitive

information to intermediate nodes. Also, in scalable L2-VPLS and scal-

able L3-VPN the encryption and authentication is done in a hop-by-hop

manner; whereas, in HIP-VPLS the encryption is PE-to-PE (or site-to-

site).

30

Results

One last important point is the avoidance of loops in the network. For

L2-VPLS loop-free topology is achieved with 802.1D protocol (PE should

implement this functionality, because they perform forwarding tasks) or

an SDN central controller. In L3-VPN the loops are avoided with the

help of the IP TTL field. Also, in L3-VPN the routing tables are con-

structed centrally and no routing loops will exist in the topology. HIP-

VPLS archives loop-free topology by assuming that customer networks

run an instance of STP protocol. There is no need to implement 802.1D

STP protocol for HIP switches since they do not forward Ethernet frames

(received from public interface) to all, but private interface.

31

Results

32

4. Conclusions

We started this work with the background material on cryptography. Here

we covered established approaches (building blocks) of modern security

protocols. In addition, we have introduced to the reader more recent de-

velopments, such as the LWE encryption scheme. We see that integration

of LWE encryption and signature algorithm into HIP protocol can be fu-

ture work. We then discussed how to build various secure tunnels, e.g.

with SSL, IPSec, and SSH protocols. We covered briefly QinQ tunneling

and MPLS protocol.

In the results section, we covered the results for various cryptographic

libraries, including the library which uses Intel NI instructions designed

to boost the AES and HMAC. We concluded that the Python library with

C-bindings is not enough for the production setup, and suggested imple-

menting the HIP-VPLS in Rust or C language. We then moved to the de-

sciption of scalable L3-VPN and HIP-VPLS solutions. We concluded the

work with a comparison of various characteristics of scalable L2-VPLS,

L3-VPN and HIP-VPLS solution.

33

Conclusions

34

Bibliography

[1] Mininet: An Instant Virtual Network on your Laptop. https://mininet.org/.

[2] RFC 6101: The Secure Sockets Layer (SSL) Protocol Version 3.0.
https://datatracker.ietf.org/doc/html/rfc6101.

[3] RFC 7401: Host Identity Protocol Version 2 (HIPv2). https://www.rfc-
editor.org/rfc/rfc7401.html.

[4] RFC 4306: Internet Key Exchange (IKEv2) Protocol, https://datatracker.
ietf.org/doc/html/rfc4306. Online, 2005.

[5] RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2.
https://datatracker.ietf.org/doc/html/rfc5246, 2008.

[6] Bypassing Deep Packet Inspection: Tunneling Traffic
Over TLS VPN https://www.linuxjournal.com/content/

bypassing-deep-packet-inspection-tunneling-traffic-over-tls-vpn.
Online, 2021.

[7] Simulating Host Identity Protocol-Based Virtual Private LAN Service Us-
ing Mininet Framework. https://www.linuxjournal.com/content/simulating-
host-identity-protocol-based-virtual-private-lan-service-using-mininet-
framework, 2022.

[8] HIP-VPLS. https://github.com/strangebit-io/hip-vpls-hw-with-controller,
2023.

[9] HIP-VPLS controller. https://github.com/strangebit-io/hip-vpls-controller,
2023.

[10] HIP-based L3-VPN. https://github.com/dmitriykuptsov/hip-vpls-routing,
2024.

[11] Python-based Host Identity Protocol, https://github.com/

dmitriykuptsov/cutehip. Online, 2025.

[12] SNR S2980G-8T Switch Configuration Guide, https://snr.systems/site/
data-files/SNR%20Switches/Configuration%20Guide/SNR-S2980G-8T%

20Configuration%20Guide%20v1.0.pdf. Online, 2025.

[13] SSH Tunneling, https://www.ssh.com/academy/ssh/tunneling. Online,
2025.

35

Bibliography

[14] BLACK, J., AND ROGAWAY, P. A block-cipher mode of operation for
parallelizable message authentication. In Proceedings of the Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques: Advances in Cryptology (Berlin, Heidelberg, 2002), EUROCRYPT
’02, Springer-Verlag, p. 384–397.

[15] GURTOV, A. Host Identity Protocol (HIP): Towards the Secure Mobile Inter-
net. 2008.

[16] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. FIPS 203:
Module-Lattice-Based Key-Encapsulation Mechanism Standard, 2024.
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf.

[17] REGEV, O. The learning with errors problem (invited survey). In Proceed-
ings of the Annual IEEE Conference on Computational Complexity (2010),
pp. 191–204.

[18] SHOR, P. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Com-
puter Science (1994).

[19] STEVENS, W. R. TCP/IP illustrated (vol. 1): The Protocols. Addison-Wesley
Longman Publishing Co., Inc., USA, 1993.

[20] STINSON, D. Cryptography: Theory and Practice, Second Edition, 2nd ed.
CRC/C&H, 2002.

36

